1000 resultados para Upwelling Regime


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With favored offshore and downstream advection, the question of which physical mechanism may promote onshore transport of larvae in upwelling systems is of central interest. We have conducted a semi-realistic high resolution (0.25 km) numerical study of Lagrangian transports across the inner-shelf under upwelling-favorable wind forcing conditions, focusing on the shelf area of the Southwestern Portuguese coast, in the lee of Cape Sines. We add our findings to several years of biological observations of C. montagui, a planktonic species with higher recruitment during the upwelling peak timely with the daylight flood. Simulations cover a fifteen days period during the summer of 2006. We focused on Spring and Neap tide periods and observed upfront differences between simulations and the in situ observa- tions. However, the model is capable of representing the main dynamics of the region, namely the re- petitive character of the inner-shelf currents. We find that the cross-shore flow varies significantly in the daily cycle, and locally within a scale of a few kilometers in association with local topography and the presence of the cape. We consider the region immediately in the lee of the cape to be an upwelling shadow where the larvae became retained, and found that tidally tied migration proves beneficial for successful recruitment during the spring tides period. Our work suggested that the wind is not the only mechanism responsible for the daily variability of the cross-shore exchange. However, its sharp reversal at midday is critical for the advection of larvae towards the coast.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees S, 42 degrees 08`W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 in s(-1), increases the atmospheric boundary layer in 214 in when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 in. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 in and 5.4 in for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts in Cabo Frio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sea-surface microlayer (SML) is at the upper- most surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air- sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50µm thick SML and from the underlying water (ULW), ca. 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1 . Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66 degrees N between 15 and 20 degrees W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediment samples from ODP Site 1085 were investigated in order to obtain more information on the initiation and development of the Benguela upwelling system during the middle and upper Miocene. In particular, our intent was to establish the causes of the upwelling as well as the response of the upwelling regime to the development of the Antarctic Circumpolar Current. Based on changes in the calcareous dinoflagellate cyst association, we found an initial increase of the dinoflagellate cyst productivity, probably related to the initiation of upwelling about 11.8 Ma ago. Two distinct increases in cyst productivity in conjunction with temperature decreases of the upper water masses reflect upwelling pulses off Namibia and occur at the end of the Miocene cooling events Mi5 (about 11.5 Ma) and Mi6 (about 10.5 Ma). Both cooling events are associated with an ice volume increase in Antarctica and are thought to have led to an increase in southeasterly winds, possibly causing these two upwelling pulses. We demonstrate a decrease in dinoflagellate cyst productivity and enhanced terrigenous input via the Orange River after the Mi5 event. At about 11.1 Ma, the dinoflagellate cyst productivity increases again. The polar cyst species Caracomia arctica occurs here for the first time. This implies an influence of subantarctic mode water and therefore a change in the quality of the upwelling water which allowed the Benguela upwelling to develop into modern conditions. From about 10.4 Ma, C. arctica forms a permanent part of the association, pointing to an establishment of the upwelling regime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sites 545 and 547 collectively penetrated 629 m of mid-Cretaceous strata (upper Aptian to upper Cenomanian) off central Morocco during Leg 79 of the Deep Sea Drilling Project. Site 545, at the base of the steep Mazagan Escarpment, records a virtually complete succession of hemipelagic sediments of early late Aptian to middle Cenomanian age. Minor faunal recycling occurred throughout much of the upper Aptian to middle Albian part of the sequence (Cores 55 through 41), reflecting bottom currents along the Mazagan Escarpment. This may be related to the strong upwelling regime and high surface water productivity over Site 545 during the latest Aptian through middle Albian. The upwelling system ceased rather abruptly in this area in late middle Albian time. Recycling of older strata by bottom currents also ceased in the late middle Albian and resulted in a slower average accumulation rate in the upper Albian to middle Cenomanian section of Site 545 (Cores 40 through 28). However, intervals of pebbly claystone conglomerates in Cores 40 and 34 record sporadic instability in the slope adjacent to Site 545. Site 547, located only about 15 km seaward, is situated in a small sub-basin adjacent to the basement block drilled by Site 544. It contains an expanded upper Albian to upper Cenomanian sequence as a result of the numerous conglomeratic intervals throughout much of the section. In contrast to Site 545, the conglomerates were not derived from older strata cropping out on the Mazagan Escarpment; rather, they originated penecontemporaneously from a local unstable slope. A detailed biostratigraphic framework based on planktonic foraminifers is established for the mid-Cretaceous sections of Sites 545 and 547 and a new composite zonal scheme is proposed for the early late Aptian through early late Cenomanian interval. Fifty-five species are recognized and illustrated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the late early Miocene to early middle Miocene, the Owen Ridge was uplifted to a sufficient height as to be above the realm of turbidite deposition. Monsoonal-induced upwelling appears to have been initiated during the Miocene. On the Oman Margin, the effect of upwelling on the microplankton was established by the middle Miocene. However, the effects of upwelling on the Owen Ridge region were not realized until later, in the early late Miocene. A transition in the upwelling regime took place between the Pliocene and Pleistocene. While the Miocene and Pliocene sediments are dominated by the siliceous component, the Pleistocene sediments seem to be dominated by the calcareous component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of radiolarian assemblages from Core MD 962086 provides new information on the variability in the upwelling intensity and origin of upwelled water masses over the past 350 ky in one of the major filamentous regions of the Benguela Upwelling System (BUS), located off Lüderitz, Namibia. The use of key radiolarian species to trace the source of upwelled waters, and the use of a radiolarian-based upwelling index (URI) to reconstruct the upwelling intensity represent the first use of radiolarians for paleoceanographic reconstructions in the BUS. These radiolarian-based proxies indicate strongest upwelling during Marine Isotope Stages (MIS) 3, 5, and 8, which compares well with other studies. While during MIS 3 and 8, the radiolarian-based proxies indicate the influx of waters of Southern Ocean origin, they also point to the increased influence of tropical waters during the lower portion of MIS 5. During MIS 2, 4 and 6 the radiolarian assemblages indicate generally lower upwelling intensities, although this signal is complicated by the increased occurrence of organic carbon in the sediments during these intervals. During MIS 2 there appears to be less of an input of Southern Ocean waters to the BUS, although during the also glacial MIS 4 and 6, there is evidence for an increased influence of cold Antarctic waters. The comparison of the results from Core MD 962086 with other studies in the BUS area indicates a non-uniform pattern of upwelling intensity and advection of cold, southern waters into this system during MIS 2. Weaker upwelling signaled by the radiolarian-based proxy in MIS 4 is in contrast to other studies that indicate higher productivity during this time period. In general, the data show that there is a strong spatiotemporal complexity in upwelling intensity in the BUS and that the advection of water into it is not strongly tied to glacial-interglacial variations in climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abundance patterns of planktic and benthic foraminifera from a tropical Atlantic drill site (Ocean Drilling Program Site 1259, Demerara Rise, Suriname margin) display a pronounced 400 kyr cyclicity, uninterrupted throughout our ~87.8-92 Ma record, between two clearly distinguishable assemblages: (1) a pelagic foraminifer fauna, which represents a deep oxygen minimum zone, and (2) another assemblage representing a shallow oxygen minimum zone where the foraminifer fauna is dominated by a higher diversity population of mostly small clavate and biserial species common in epicontinental seas. The cyclic changes in the long eccentricity band (400 kyr) between these two assemblages are proposed to reflect changes in the mean latitudinal position of the Intertropical Convergence Zone (ITCZ). Associated fluctuations in precipitation and trade wind strength may have influenced the upwelling regime at Demerara Rise leading to the observed cyclicity of planktic foraminiferal assemblages. The severe Turonian to Coniacian paleoclimatic and paleoceanographic changes in the Atlantic Ocean (e.g., gateway opening, cooling, and glaciation), however, seem to have no influence on the composition of tropical planktic foraminiferal faunas. There is no apparent relationship between foraminifer abundances and a major deflection in the stable isotope record interpreted elsewhere as a sign of the growth and decay of a large polar ice sheet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seventeen sediment samples of Albian-Cenomanian to early Pliocene age from DSDP Hole 530A in the Angola Basin and six sediment samples of early Pliocene to late Pleistocene age from the Walvis Ridge were investigated by organic geochemical methods, including organic carbon determination, Rock-Eval pyrolysis, gas chromatography and combined gas chromatography/mass spectrometry of extractable hydrocarbons, and kerogen microscopy. The organic matter in all samples is strongly influenced by a terrigenous component from the nearby continent. The amount of marine organic matter present usually increases with the total organic carbon content, which reaches an extreme value of more than 10% in a Cenomanian black shale from Hole 530A. At Site 530 the extent of preservation of organic matter in the deep sea sediments is related to mass transport down the continental slope, whereas the high organic carbon contents in the sediments from Site 532 reflect both high bioproductivity in the Benguela upwelling regime and considerable supply of terrigenous organic matter. The maturation level of the organic matter is low in all samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temporal changes in d15N values of sinking particles collected with sediment traps in the Benguela upwelling regime off southwest Africa mirrored variations in the input of inorganic nitrogen to the surface water. Reductions in d15N (to as low as 2.5 per mil) corresponded to low sea surface temperatures during austral spring and late austral autumn/early winter, indicating increased nitrate availability due to the presence of recently upwelled water. High particulate fluxes accompanied the low d15N values and sea surface temperatures, reflecting increased productivity, fueled by the upwelled nutrients. High d15N values (up to 13.1 per mil) coincided with high sea surface temperatures and low particle fluxes. In this area, the seaward extension of upwelling filaments, which usually occurs twice yearly, brings nutrient-rich water to the euphotic zone and leads to elevated productivity and relatively lower d15N values of the particulate nitrogen. Satellite images of ocean chlorophyll show that productivity variations coincide with d15N changes. The observed isotopic pattern does not appear to have been caused by variations in the species composition of the phytoplankton assemblage. Calculations based on d15N of the sinking particulate nitrogen show that the surface nitrate pool was more depleted during late austral summer/early fall and mid-winter and that supply exceeded demand during the intense spring bloom and in late austral fall. The main uncertainty associated with these estimates is the effect of diagenesis on d15N and possible variability in preservation of the isotope signal between periods of high and low particle flux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[1] The low-latitude upwelling regime off the Mauritanian coast in the subtropical NE Atlantic accounts for a significant part of global export production. Although productivity variations in coastal upwelling areas are usually attributed to changes in wind stress and upwelling intensity, productivity dynamics off Mauritania are less straightforward because of the complex atmospheric and hydrographic setting. Here we integrate micropaleontological (diatoms) and geochemical (bulk biogenic sediment components, X-ray fluorescence, and alkenones) proxies to examine on submillennial-to-millennial changes in diatom production that occurred off Mauritania, NW Africa, for the last 25 ka. During the Last Glacial Maximum (LGM, 19.0-23.0 ka B.P.), moderate silicate content of upwelled waters coupled with weakened NE trade winds determined moderate diatom productivity. No significant cooling is observed during the LGM, suggesting that our alkenone-based SST reconstruction represents a local, upwelling-related signal rather than a global insolation related one. Extraordinary increases in diatom and opal concentrations during Heinrich event 1 (H1, 15.5-18.0 ka B.P.) and the Younger Dryas (YD, 13.5-11.5 ka B.P.) are attributed to enhanced upwelling of silica-rich waters and an enlarged upwelling filament, due to more intense NE trade winds. The synchronous increase of CaCO3 and K intensity and the decreased opal and diatoms values mark the occurrence of the Bølling/Allerød (BA, 13.5-15.5 ka B.P.) due to weakened eolian input and more humid conditions on land. Although the high export of diatoms is inextricably linked to upwelling intensity off Mauritania, variability in the nutrient content of the thermocline also plays a decisive role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multi-platform four-dimensional observational approach. Research vessel, multiple glider and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The dataset consists of more than 10000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ca. 0.25 m/s at 100 to 200 m depth was observed. Starting on January 20 a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentrations less than 1mol/kg, an elevated nitrogen-deficit of ca. 17µmol/l and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small scale salinity and oxygen structures were formed by along-isopycnal stirring and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open-ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.